Percolation on uniform infinite planar maps
نویسندگان
چکیده
We construct the uniform infinite planar map (UIPM), obtained as the n → ∞ local limit of planar maps with n edges, chosen uniformly at random. We then describe how the UIPM can be sampled using a “peeling” process, in a similar way as for uniform triangulations. This process allows us to prove that for bond and site percolation on the UIPM, the percolation thresholds are p c = 1/2 and p site c = 2/3 respectively. This method also works for other classes of random infinite planar maps, and we show in particular that for bond percolation on the uniform infinite planar quadrangulation, the percolation threshold is p c = 1/3.
منابع مشابه
Hyperbolic and Parabolic Unimodular Random Maps Omer Angel Tom Hutchcroft Asaf Nachmias Gourab Ray
We show that for infinite planar unimodular random rooted maps, many global geometric and probabilistic properties are equivalent, and are determined by a natural, local notion of average curvature. This dichotomy includes properties relating to amenability, conformal geometry, random walks, uniform and minimal spanning forests, and Bernoulli bond percolation. We also prove that every simply co...
متن کاملHyperbolic and Parabolic Unimodular Random Maps Omer Angel Tom Hutchcroft Asaf Nachmias Gourab Ray
We show that for infinite planar unimodular random rooted maps, many global geometric and probabilistic properties are equivalent, and are determined by a natural, local notion of average curvature. This dichotomy includes properties relating to amenability, conformal geometry, random walks, uniform and minimal spanning forests, and Bernoulli bond percolation. We also prove that every simply co...
متن کاملScaling of Percolation on Infinite Planar Maps, I
We consider several aspects of the scaling limit of percolation on random planar triangulations, both finite and infinite. The equivalents for random maps of Cardy’s formula for the limit under scaling of various crossing probabilities are given. The limit probabilities are expressed in terms of simple events regarding Airy-Lévy processes. Some explicit formulas for limit probabilities follow f...
متن کاملSelf-dual Planar Hypergraphs and Exact Bond Percolation Thresholds
A generalized star-triangle transformation and a concept of triangle-duality have been introduced recently in the physics literature to predict exact percolation threshold values of several lattices. We investigate the mathematical conditions for the solution of bond percolation models, and identify an infinite class of lattice graphs for which exact bond percolation thresholds may be rigorousl...
متن کاملGeneralizations and Interpretations of Incipient Infinite Cluster Measure on Planar Lattices and Slabs
For critical planar percolation, although there is no infinite open component, there exists giant clusters on every macroscopic scale. It is reasonable to believe that local patterns around vertices of large spanning clusters appear with frequencies given by a probability measure on occupancy configurations. This measure would inherit properties of critical percolation, but would be supported o...
متن کامل